312,298 research outputs found

    Gauge Invariance and QCD Twist-3 Factorization for Single Spin Asymmetries

    Full text link
    The collinear factorization at twist-3 for Drell-Yan processes is studied with the motivation to solve the discrepancy in literature about the single spin asymmetry in the lepton angular distribution, and to show how QCD gauge invariance is realized in the hadronic tensor. The obtained result here agrees with our early result derived with a totally different approach. In addition to the asymmetry we can construct another two observables to identify the spin effect. We show that the gauge invariance of different contributions in the hadronic tensor is made in different ways by summing the effects of gluon exchanges. More interestingly is that we can show that the virtual correction to one structure function of the hadronic tensor, hence to some weighted SSA observables, is completely determined by the quark form factor. This will simplify the calculation of higher order corrections. The corresponding result in semi-inclusive DIS is also given for the comparison with Drell-Yan processes.Comment: Small changes, accepted by JHE

    Different steady states for spin currents in noncollinear multilayers

    Full text link
    We find there are at least two different steady states for transport across noncollinear magnetic multilayers. In the conventional one there is a discontinuity in the spin current across the interfaces which has been identified as the source of current induced magnetic reversal; in the one advocated herein the spin torque arises from the spin accumulation transverse to the magnetization of a magnetic layer. These two states have quite different attributes which should be discerned by current experiments.Comment: 8 pages, no figure. Accepted for publication in Journal of Physics: Condensed Matte

    Twist-3 Contributions in Semi-Inclusive DIS with Transversely Polarized Target

    Get PDF
    We study semi-inclusive DIS with a transversely polarized target in the approach of collinear factorization. The effects related with the transverse polarization are at twist-3. We derive the complete result of twist-3 contributions to the relevant hadronic tensor at leading order of αs\alpha_s, and construct correspondingly experimental observables. Measuring these observables will help to extract the twist-2 transversity distribution, twist-3 distributions and twist-3 fragmentation functions of the produced unpolarized hadron. A detailed comparison with the approach of transverse-momentum-dependent factorization is made.Comment: discussions and references are added. Published version in PL

    QCD Evolutions of Twist-3 Chirality-Odd Operators

    Get PDF
    We study the scale dependence of twist-3 distributions defined with chirality-odd quark-gluon operators. To derive the scale dependence we explicitly calculate these distributions of multi-parton states instead of a hadron. Taking one-loop corrections into account we obtain the leading evolution kernel in the most general case. In some special cases the evolutions are simplified. We observe that the obtained kernel in general does not get simplified in the large-NcN_c limit in contrast to the case of those twist-3 distributions defined only with chirality-odd quark operators. In the later, the simplification is significant.Comment: 9 pages, 2 figure

    Exotic Hill Problem: Hall motions and symmetries

    Full text link
    Our previous study of a system of bodies assumed to move along almost circular orbits around a central mass, approximately described by Hill's equations, is extended to "exotic" [alias non-commutative] particles. For a certain critical value of the angular velocity, the only allowed motions follow the Hall law. Translations and generalized boosts span two independent Heisenberg algebras with different central parameters. In the critical case, the symmetry reduces to a single Heisenberg algebra.Comment: RevTeX, 4 pages, 4 figure

    Tunnel transport and interlayer excitons in bilayer fractional quantum Hall systems

    Get PDF
    In a bilayer system consisting of a composite-fermion Fermi sea in each layer, the tunnel current is exponentially suppressed at zero bias, followed by a strong peak at a finite bias voltage VmaxV_{\rm max}. This behavior, which is qualitatively different from that observed for the electron Fermi sea, provides fundamental insight into the strongly correlated non-Fermi liquid nature of the CF Fermi sea and, in particular, offers a window into the short-distance high-energy physics of this state. We identify the exciton responsible for the peak current and provide a quantitative account of the value of VmaxV_{\rm max}. The excitonic attraction is shown to be quantitatively significant, and its variation accounts for the increase of VmaxV_{\rm max} with the application of an in-plane magnetic field. We also estimate the critical Zeeman energy where transition occurs from a fully spin polarized composite fermion Fermi sea to a partially spin polarized one, carefully incorporating corrections due to finite width and Landau level mixing, and find it to be in satisfactory agreement with the Zeeman energy where a qualitative change has been observed for the onset bias voltage [Eisenstein et al., Phys. Rev. B 94, 125409 (2016)]. For fractional quantum Hall states, we predict a substantial discontinuous jump in VmaxV_{\rm max} when the system undergoes a transition from a fully spin polarized state to a spin singlet or a partially spin polarized state.Comment: 14 pages, 14 figure
    • …
    corecore